• 一元二次方程例題50道 帶答案

    一元二次方程單元復習

    一、選擇題:(每小題2分,共20分)
    1.下列方程中不一定是一元二次方程的是( )
    A.(a-3)x2=8(a≠0) B.ax2+bx+c=0
    C.(x+3)(x-2)=x+5 D.
    2.已知一元二次方程ax2+c=0(a≠0),若方程有解,則必須有C等于( )
    A.- B.-1 C. D.不能確定
    3.若關于x的方程ax2+2(a-b)x+(b-a)=0有兩個相等的實數根,則a:b等于( )
    A.-1或2 B.1或 C.- 或1 D.-2或1
    4.若關于y的一元二次方程ky2-4y-3=3y+4有實根,則k的取值范圍是( )
    A.k>- B.k≥- 且k≠0 C.k≥- D.k> 且k≠0
    5.已知方程 的兩根分別為a, ,則方程 的根是( )
    A. B. C. D.
    6.關于x的方程x2+2(k+2)x+k2=0的兩個實數根之和大于-4,則k的取值范圍是( )
    A.k>-1 B.k<0 C.-1-4,k<0,
    ∴-1≤k<0.本題易忽略有兩實根,需滿足△≥0這個重要條件.
    7.D.點撥:設x2-kx+b=0的兩根為x1,x2,則x2+kx+6=0的兩根為x1+5,x2+5,因為x1+x2=k,(x1+5)+(x2+5)=-k所以k=-5.
    8.A 點撥:使分式的值為零的條件:分子=0分母≠0,x2-5x-6=0,x=6或-1,x+ 1≠0,x≠-1,故x=6,本題易漏分母不能為零這個條件.
    9.A 點撥:∵x2≥0,│x│≥0,∴x2-4│x│+3=0的解就是方程│x│2-4│x│+3=0的解,(│x│-3)(│x│-1)=0,x=±3或x=±1.
    10.D 點撥:兩方程有相同實根,則x2+k2-16=x2-3k+12,解得k=-7或4,
    當k=- 7時,方程無實根,∴k=4.
    二、
    11.m=-6,另一根為3+ .
    點撥:根據一元二次方程根與系數的關系,設方程另一個根為x1 ,
    則(3- )x1=7,x1=3+ ,(3+ )+(3- )=-m,則m=-6.
    12.a=1,b=-2.點撥:-1是兩方程的根,則3a+b-1=0,a-2b-5=0,解得a=1,b=-2.
    13.a+b+c=0,b=a+c,c=0.
    14.3 點撥:設兩根為x1,x2,根據根與系數的關系x1+x2=4,x1?x2= ,
    由勾股定理斜邊長的平方=(x1+x2)2-2x1x2=16-2× =9,∴斜邊長為3.
    15.3 點撥:x2-3x-1=0的△=13>0,x2-x+3=0的△=-11<0所有實根和,就是方程x2-3x-1=0中兩根之和,由根與系數的關系求得兩根之和等于3.
    16. 元 點撥:設原價x元,則x(1+10%)2=a,解得x= .
    17.x2+7x+12=0或x2-7x+12=0 點撥:設兩數為a,b,則ab=12,a2+b2=25,
    ∴( a+b)2-2ab=25,(a+b)2=49,(a+b)=±7,
    所以以a,b為根的方程為x2+7x+12= 0 或x2-7x+12=0.
    18.a+β≥1 點撥:方程有實根,則△≥0,則k≤ ,即-k≥- ,1-k≥1- ,2(1-k)≥1,∵a+β=2(1-k),∴a+β≥1.
    19.4083 點撥:由公式法得x= ,則
    =
    ∴A2=4083
    20.60,30 解:設寬為xcm,則長為2xcm,由題意得(2x-10)×(x-10)×5=1500,
    解得x1=20,x2=-5(舍去),2x=40. 本題注意單位要一致.
    三、
    21.k=-3,y2-20y-21=0
    解:(1)由題意得x1+x2=k+2,x1?x2=2k+1,x12+x22=(x1+x2)2-2 x1?x2=k2+2,又x12+x22=11,
    ∴k2+2=11,k=±3,
    當k=3時,△=-3<0,原方程無實數解;當k=-3時,△=21>0,原方程有實數解,故k=-3.
    (2)當k=-3時,原方程為x2+x-5=0,設所求方程為y2+py+q=0,兩根為y1,y2,
    則y1=x1+x2=-1,y2=(x1-x2)2=x12+x22-2x1x2=11+10=21,
    ∴y1+y2=20,y1y2=-21,故所求方程是y2-20y-21=0.
    點撥:要求k的值,須利用根與系數的關系及條件x12+x22=(x1+x2)2-2 x1?x2,構造關于k的方程,同時,要注意所求出的k值,應使方程有兩個實數根,即先求后檢.
    (2)構造方程時,要利用p=-(y1+y2),q=y1y2,則以y1,y2為根的一元二次方程為y2+py+q=0.
    22.(1)證明:方程x2+2 x+2c-a=0有兩個相等的實根,
    ∴△=0,即△=(2 )2-4×(2c-a)=0,
    解得a+b=2c,方程3cx+2b=2a的根為0,則2b=2a,a=b,
    ∴2a=2c,a=c,
    ∴a=b=c,故△ABC為等邊三角形.
    (2)解:∵a、b相等,∴x2+mx-3m=0有兩個相等的實根,
    ∴△=0,∴△=m2+4×1×3m=0,
    即m1=0,m2=-12.
    ∵a、b為正數,
    ∴m1=0(舍),故m=-12.
    23.解:如答圖,易證△ABC∽△ADC,
    ∴ ,AC2=AD?AB.同理BC2=BD×AB,
    ∴ ,
    ∵ ,
    ∴ ,∴m=2n ①.
    ∵關于x的方程 x2-2(n-1)x+m2-12=0有兩實數根,
    ∴△=[-2(n-1)2-4× ×(m2-12)≥0,
    ∴4n2-m2-8n+16≥0,
    把①代入上式得n≤2 ②.
    設關于x的方程 x2-2(n-1)x+m2-12=0的兩個實數根分別為x1,x2,
    則x1+x2=8(n-1),x1?x2=4(m2-2),
    依題意有(x1-x2)2<192,即[8(n-1)]2-4(m2-12)]<192,
    ∴4n2—m2-8n+4<0,把①式代入上式得n> ③,由②、③得 50,不符合題意,舍去,x1=6時,100-10×6=40<50,
    ∴稅率應確定為6%.
    點撥:這是有關現實生活知識應用題,是近幾年中考題的重要類型,要切實理解,掌握.
    26.解:設小燈炮的額定電壓為U,根據題意得:
    , ,解得U1=6,U2=9(舍去)
    ∵額定電壓小于8V,∴U=6.
    答:小燈泡的額定電壓是6V.
    點撥:這是一道物理與數學學科間的綜合題目,解答此問題的關鍵是熟記物理公式并會解可化為一元二次方程的分式方程,檢驗是本題的易忽略點哦.

    轉載請注明出處百家教育網 » 一元二次方程例題50道 帶答案

    文化

    初中三年數學重點知識總結

    閱讀(790)

    第一章 有理數 1.1 正數與負數 在以前學過的0以外的數前面加上負號“—”的數叫負數(negative number)。 與負數具有相反意義,即以前學過的0以外的數叫做正數(positive

    文化

    焦作的考研輔導班名氣比較大的是哪一家

    閱讀(665)

    我考研只上過一家網課的,面授的我沒有上過,但是我跟很多面授的同學交流過,基本上的上課內容都是差不多的,無非是比網課的多一點課時,該講的重要知識點都會講的。所以說報哪個班都

    文化

    焦作的哪個小學教學質量好?

    閱讀(707)

    焦作市解放區民生街小學 / 民生東街65號 / 0391-222306 焦作市解放區幸福街小學 / 幸福街 / 0391-222132 焦作市解放區焦西小學 / 建設西路 / 0391-224321 焦作市中站區中站

    文化

    初中數學 全部知識概括

    閱讀(568)

    1 過兩點有且只有一條直線 2 兩點之間線段最短 3 同角或等角的補角相等 4 同角或等角的余角相等 5 過一點有且只有一條直線和已知直線垂直 6 直線外一點與直線上各點連

    文化

    初三數學(有關一元二次方程的)

    閱讀(643)

    解: 1. (1) a2+b2+c2=251 (a,b,c均為奇數) ==> a=1,b=5,c=15 (2) a+b=17 且 a2+b2=169 ==> a=12,b=5 即三角形最短邊為5 2.設每輪感染中平均一臺電腦可感染x臺電腦,

    文化

    初三數學一元二次方程

    閱讀(489)

    怎樣學好數學之一 1、學數學和學其他課一樣,上課要注意聽講,上課或下課要預習和復習,把每個知識點學透徹.但各門課程都有不同點:比如語文課今天我沒上,明天上完課再補也可

    文化

    初中數學可分為哪幾類

    閱讀(498)

    代數部分 方程,1.一元二次方程 2一元一次方程 3.二元一次方程組 4.分式方程 數與式 1.整式 2.分式

    文化

    初三數學有關圓的所有公式。

    閱讀(450)

    1.圓的周長C=2πr=πd 2.圓的面積S=πr2 3.扇形弧長l=nπr/180 4.扇形面積S=nπr2/360=rl/2 5.圓錐側面積S=πrl 〖圓的定義〗 幾何說:平面上到定點的距離等于定長

    文化

    求100條一元二次方程題目

    閱讀(532)

    一元二次方程測試題 說明本試卷滿分100分,考試時間100分鐘 一、填充題:(2’×11=22’) 1、 方程x2= 的根為 。 2、 方程(x+1)2-2(x-1)2=6x-5的一般形式是 。 3、 關于x的一元二

    人妻自慰20P|,人妻无码手机在线中文,加勒比中文字幕无码一区,黄 色 成 人网站免费 片子